Numerical simulations of pore isolation and competition in idealized micro-spall process
Résumé
The ‘micro-spall’ phenomenon is a variant of fragmentation process—or spall fracture—that is traditionally discussed in context of solid materials (metals). However it concerns situations in which the medium is fully or partially melted—be it due to kinetic impact, detonation or laser loading. The phenomenon takes place at sub-micrometer and sub-microsecond scales making it inaccessible to direct experimental observation; so far, investigations have been restricted to observations of late time “post-mortem” fragments. In this context, it becomes a viable approach to apply analysis using numerical description for fluids. This work presents such an application for an idealized rapid uniaxial (one-dimensional) system expansion. Cavitation in the medium is represented by including vacuous pores or cavities with surface tension whose growth and interaction are traced in time. The simulations reveal two main regimes of pore growth regulated by a characteristic Weber number.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...