Parameterized verification of algorithms for oblivious robots on a ring - Sorbonne Université
Article Dans Une Revue Formal Methods in System Design Année : 2020

Parameterized verification of algorithms for oblivious robots on a ring

Nathalie Sznajder
Maria Potop-Butucaru
Sébastien Tixeuil

Résumé

We study verification problems for autonomous swarms of mobile robots that self-organize and cooperate to solve global objectives. In particular, we focus in this paper on the model proposed by Suzuki and Yamashita of anonymous robots evolving in a discrete space with a finite number of locations (here, a ring). A large number of algorithms have been proposed working for rings whose size is not a priori fixed and can be hence considered as a parameter. Handmade correctness proofs of these algorithms have been shown to be error-prone, and recent attention had been given to the application of formal methods to automatically prove those. Our work is the first to study the verification problem of such algorithms in the parameterized case. We show that safety and reachability problems are undecidable for robots evolving asynchronously. On the positive side, we show that safety properties are decidable in the synchronous case, as well as in the asynchronous case for a particular class of algorithms. Several other properties of the protocol can be decided as well. Decision procedures rely on an encoding in Presburger arithmetics formulae that can be verified by an SMT-solver. Feasibility of our approach is demonstrated by the encoding of several case studies.

Dates et versions

hal-02290400 , version 1 (17-09-2019)

Identifiants

Citer

Arnaud Sangnier, Nathalie Sznajder, Maria Potop-Butucaru, Sébastien Tixeuil. Parameterized verification of algorithms for oblivious robots on a ring. Formal Methods in System Design, 2020, 56, pp.55-89. ⟨10.1007/s10703-019-00335-y⟩. ⟨hal-02290400⟩
158 Consultations
0 Téléchargements

Altmetric

Partager

More