Tensor network simulation of multi-environmental open quantum dynamics via machine learning and entanglement renormalisation - Sorbonne Université
Article Dans Une Revue Nature Communications Année : 2019

Tensor network simulation of multi-environmental open quantum dynamics via machine learning and entanglement renormalisation

Résumé

The simulation of open quantum dynamics is a critical tool for understanding how the non-classical properties of matter might be functionalised in future devices. However, unlocking the enormous potential of molecular quantum processes is highly challenging due to the very strong and non-Markovian coupling of 'environmental' molecular vibrations to the electronic 'system' degrees of freedom. Here, we present an advanced but general computational strategy that allows tensor network methods to effectively compute the non-perturbative, real-time dynamics of exponentially large vibronic wave functions of real molecules. We demonstrate how ab initio modelling, machine learning and entanglement analysis can enable simulations which provide real-time insight and direct visualisation of dissipative photo-physics, and illustrate this with an example based on the ultrafast process known as singlet fission.
Fichier principal
Vignette du fichier
s41467-019-09039-7.pdf (1.32 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-02377569 , version 1 (23-11-2019)

Identifiants

Citer

Florian A. Y. N. Schröder, David H P Turban, Andrew J Musser, Nicholas D M Hine, Alex W Chin. Tensor network simulation of multi-environmental open quantum dynamics via machine learning and entanglement renormalisation. Nature Communications, 2019, 10 (1), ⟨10.1038/s41467-019-09039-7⟩. ⟨hal-02377569⟩
108 Consultations
73 Téléchargements

Altmetric

Partager

More