Sodium and Potassium Signatures of Volcanic Satellites Orbiting Close-in Gas Giant Exoplanets - Sorbonne Université Accéder directement au contenu
Article Dans Une Revue The Astrophysical Journal Année : 2019

Sodium and Potassium Signatures of Volcanic Satellites Orbiting Close-in Gas Giant Exoplanets

Résumé

Extrasolar satellites are generally too small to be detected by nominal searches. By analogy to the most active body in the solar system, Io, we describe how sodium (Na I) and potassium (K I) gas could be a signature of the geological activity venting from an otherwise hidden exo-Io. Analyzing ∼a dozen close-in gas giants hosting robust alkaline detections, we show that an Io-sized satellite can be stable against orbital decay below a planetary tidal   10 p 11. This tidal energy is also focused into the satellite driving an ∼10 5±2 higher mass-loss rate than Io's supply to Jupiter's Na exosphere based on simple atmospheric loss estimates. The remarkable consequence is that several exo-Io column densities are, on average, more than sufficient to provide the ∼10 10±1 Na cm −2 required by the equivalent width of exoplanet transmission spectra. Furthermore, the benchmark observations of both Jupiter's extended (∼1000 R J) Na exosphere and Jupiter's atmosphere in transmission spectroscopy yield similar Na column densities that are purely exogenic in nature. As a proof of concept, we fit the "high-altitude" Na at WASP-49b with an ionization-limited cloud similar to the observed Na profile about Io. Moving forward, we strongly encourage time-dependent ingress and egress monitoring along with spectroscopic searches for other volcanic volatiles.
Fichier principal
Vignette du fichier
Oza_2019_ApJ_885_168.pdf (1.35 Mo) Télécharger le fichier
Origine : Publication financée par une institution
Loading...

Dates et versions

hal-02417964 , version 1 (18-12-2019)

Identifiants

Citer

Apurva Oza, Robert Johnson, Emmanuel Lellouch, Carl Schmidt, Nick Schneider, et al.. Sodium and Potassium Signatures of Volcanic Satellites Orbiting Close-in Gas Giant Exoplanets. The Astrophysical Journal, 2019, 885 (2), pp.168. ⟨10.3847/1538-4357/ab40cc⟩. ⟨hal-02417964⟩
285 Consultations
52 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More