Skip to Main content Skip to Navigation
Preprints, Working Papers, ...

Some Theoretical Insights into Wasserstein GANs

Abstract : Generative Adversarial Networks (GANs) have been successful in producing outstanding results in areas as diverse as image, video, and text generation. Building on these successes, a large number of empirical studies have validated the benefits of the cousin approach called Wasserstein GANs (WGANs), which brings stabilization in the training process. In the present paper, we add a new stone to the edifice by proposing some theoretical advances in the properties of WGANs. First, we properly define the architecture of WGANs in the context of integral probability metrics parameterized by neural networks and highlight some of their basic mathematical features. We stress in particular interesting optimization properties arising from the use of a parametric 1-Lipschitz discriminator. Then, in a statistically-driven approach, we study the convergence of empirical WGANs as the sample size tends to infinity, and clarify the adversarial effects of the generator and the discrimi-nator by underlining some trade-off properties. These features are finally illustrated with experiments using both synthetic and real-world datasets.
Document type :
Preprints, Working Papers, ...
Complete list of metadatas
Contributor : Maxime Sangnier <>
Submitted on : Wednesday, June 3, 2020 - 6:11:25 PM
Last modification on : Tuesday, June 30, 2020 - 2:28:10 PM


Files produced by the author(s)


  • HAL Id : hal-02751784, version 1


Gérard Biau, Maxime Sangnier, Ugo Tanielian. Some Theoretical Insights into Wasserstein GANs. 2020. ⟨hal-02751784⟩



Record views


Files downloads