Computing critical points for invariant algebraic systems - Sorbonne Université
Article Dans Une Revue Journal of Symbolic Computation Année : 2023

Computing critical points for invariant algebraic systems

Jean-Charles Faugère
Mohab Safey El Din
Éric Schost
  • Fonction : Auteur
  • PersonId : 988953
Thi Xuan Vu

Résumé

Let $\KK$ be a field and $\phi$, $\f = (f_1, \ldots, f_s)$ in $\KK[x_1, \dots, x_n]$ be multivariate polynomials (with $s < n$) invariant under the action of $\Sc_n$, the group of permutations of $\{1, \dots, n\}$. We consider the problem of computing the points at which $\f$ vanish and the Jacobian matrix associated to $\f, \phi$ is rank deficient provided that this set is finite. We exploit the invariance properties of the input to split the solution space according to the orbits of $\Sc_n$. This allows us to design an algorithm which gives a triangular description of the solution space and which runs in time polynomial in $d^s$, ${{n+d}\choose{d}}$ and $\binom{n}{s+1}$ where $d$ is the maximum degree of the input polynomials. When $d,s$ are fixed, this is polynomial in $n$ while when $s$ is fixed and $d \simeq n$ this yields an exponential speed-up with respect to the usual polynomial system solving algorithms.
Fichier principal
Vignette du fichier
hal-critpoint-main.pdf (437.55 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02927636 , version 1 (01-09-2020)

Identifiants

Citer

Jean-Charles Faugère, George Labahn, Mohab Safey El Din, Éric Schost, Thi Xuan Vu. Computing critical points for invariant algebraic systems. Journal of Symbolic Computation, 2023, 116, pp.365-399. ⟨10.1016/j.jsc.2022.10.002⟩. ⟨hal-02927636⟩
431 Consultations
241 Téléchargements

Altmetric

Partager

More