A variational sheath model for gyrokinetic vlasov-poisson equations - Sorbonne Université
Article Dans Une Revue ESAIM: Mathematical Modelling and Numerical Analysis Année : 2021

A variational sheath model for gyrokinetic vlasov-poisson equations

Résumé

We construct a gyrokinetic variational model for sheaths close to the metallic wall of a magnetized plasma, following a physical extremalization principle for the natural energy. By considering a reduced set of parameters we show that our model has a unique minimal solution, and that the resulting electric potential has an infinite number of oscillations as it propagates towards the core of the plasma. We prove this result for the non linear problem and also provide a simpler analysis for a linearized problem, based on the construction of exact solutions. Some numerical illustrations show the well-posedness of the model after numerical discretization. They also exhibit the oscillating behavior.
Fichier principal
Vignette du fichier
m2an210042 (1).pdf (1.22 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-03160211 , version 1 (05-03-2021)
hal-03160211 , version 2 (01-02-2022)

Licence

Identifiants

Citer

Mehdi Badsi, Martin Campos Pinto, Bruno Després, Ludovic Godard-Cadillac. A variational sheath model for gyrokinetic vlasov-poisson equations. ESAIM: Mathematical Modelling and Numerical Analysis, 2021, 55 (6), pp.2609-2642. ⟨10.1051/m2an/2021067⟩. ⟨hal-03160211v2⟩
327 Consultations
362 Téléchargements

Altmetric

Partager

More