Markovian Solutions to Discontinuous ODEs - Sorbonne Université
Article Dans Une Revue Journal of Dynamics and Differential Equations Année : 2021

Markovian Solutions to Discontinuous ODEs

Résumé

Given a possibly discontinuous, bounded function f:R↦R, we consider the set of generalized flows, obtained by assigning a probability measure on the set of Carathéodory solutions to the ODE x˙=f(x). The paper provides a complete characterization of all such flows which have a Markov property in time. This is achieved in terms of (i) a positive, atomless measure supported on the set f−1(0) where f vanishes, (ii) a countable number of Poisson random variables, determining the waiting times at points in f−1(0), and (iii) a countable set of numbers θk∈[0,1], describing the probability of moving up or down, at isolated points where two distinct trajectories can originate.
Fichier principal
Vignette du fichier
jdde.pdf (374.63 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03197735 , version 1 (14-04-2021)

Identifiants

Citer

Alberto Bressan, Marco Mazzola, Khai T Nguyen. Markovian Solutions to Discontinuous ODEs. Journal of Dynamics and Differential Equations, 2021, ⟨10.1007/s10884-021-09974-4⟩. ⟨hal-03197735⟩
41 Consultations
62 Téléchargements

Altmetric

Partager

More