Horocycle averages on closed manifolds and transfer operators
Abstract
We adapt to $C^r$ Anosov flows on compact manifolds a construction for $C^r$ discrete-time hyperbolic dynamics ($r>1$), obtaining anisotropic Banach or Hilbert spaces on which the resolvent of the generator of weighted transfer operators for the flow is quasi-compact. We apply this to study the ergodic integrals of the horocycle flows $h_\rho$ of $C^r$ codimension one mixing Anosov flows. In dimension three, for any suitably bunched $C^3$ contact Anosov flow with orientable strong-stable distribution, we establish power-law convergence of the ergodic average. We thereby implement the program of Giulietti-Liverani in the "real-life setting" of geodesic flows in variable negative curvature, where nontrivial resonances exist.