Kinetic models for epidemic dynamics with social heterogeneity - Sorbonne Université
Article Dans Une Revue Journal of Mathematical Biology Année : 2021

Kinetic models for epidemic dynamics with social heterogeneity

Résumé

We introduce a mathematical description of the impact of the number of daily contacts in the spread of infectious diseases by integrating an epidemiological dynamics with a kinetic modeling of population-based contacts. The kinetic description leads to study the evolution over time of Boltzmann-type equations describing the number densities of social contacts of susceptible, infected and recovered individuals, whose proportions are driven by a classical SIR-type compartmental model in epidemiology. Explicit calculations show that the spread of the disease is closely related to moments of the contact distribution. Furthermore, the kinetic model allows to clarify how a selective control can be assumed to achieve a minimal lockdown strategy by only reducing individuals undergoing a very large number of daily contacts. We conduct numerical simulations which confirm the ability of the model to describe different phenomena characteristic of the rapid spread of an epidemic. Motivated by the COVID-19 pandemic, a last part is dedicated to fit numerical solutions of the proposed model with infection data coming from different European countries.
Fichier principal
Vignette du fichier
Dimarco2021_Article_KineticModelsForEpidemicDynami.pdf (1.39 Mo) Télécharger le fichier
Origine Publication financée par une institution

Dates et versions

hal-03272232 , version 1 (28-06-2021)

Identifiants

Citer

Giacomo Dimarco, Benoît Perthame, Giuseppe Toscani, Mattia Zanella. Kinetic models for epidemic dynamics with social heterogeneity. Journal of Mathematical Biology, 2021, 83 (1), pp.4. ⟨10.1007/s00285-021-01630-1⟩. ⟨hal-03272232⟩
80 Consultations
42 Téléchargements

Altmetric

Partager

More