A deep learning algorithm for 3D cell detection in whole mouse brain image datasets - Sorbonne Université
Article Dans Une Revue PLoS Computational Biology Année : 2021

A deep learning algorithm for 3D cell detection in whole mouse brain image datasets

Résumé

Understanding the function of the nervous system necessitates mapping the spatial distributions of its constituent cells defined by function, anatomy or gene expression. Recently, developments in tissue preparation and microscopy allow cellular populations to be imaged throughout the entire rodent brain. However, mapping these neurons manually is prone to bias and is often impractically time consuming. Here we present an open-source algorithm for fully automated 3D detection of neuronal somata in mouse whole-brain microscopy images using standard desktop computer hardware. We demonstrate the applicability and power of our approach by mapping the brain-wide locations of large populations of cells labeled with cytoplasmic fluorescent proteins expressed via retrograde trans-synaptic viral infection.
Fichier principal
Vignette du fichier
journal.pcbi.1009074.pdf (2.34 Mo) Télécharger le fichier
Origine Publication financée par une institution

Dates et versions

hal-03282344 , version 1 (09-07-2021)

Identifiants

Citer

Adam L Tyson, Charly V Rousseau, Christian J Niedworok, Sepiedeh Keshavarzi, Chryssanthi Tsitoura, et al.. A deep learning algorithm for 3D cell detection in whole mouse brain image datasets. PLoS Computational Biology, 2021, 17 (5), pp.e1009074. ⟨10.1371/journal.pcbi.1009074⟩. ⟨hal-03282344⟩
26 Consultations
34 Téléchargements

Altmetric

Partager

More