An Analytic Graph Data Model and Query Language for Exploring the Evolution of Science - Sorbonne Université
Article Dans Une Revue Big Data Research Année : 2021

An Analytic Graph Data Model and Query Language for Exploring the Evolution of Science

Ke Li
  • Fonction : Auteur
  • PersonId : 758043
  • IdRef : 080727212
Hubert Naacke
  • Fonction : Auteur
Bernd Amann

Résumé

In this article we propose a data model and query language for the visualisation and exploration of topic evolution networks representing the research progress in scientific document archives. Our model is independent of a particular topic extraction and alignment method and proposes a set of semantic and structural metrics for characterizing and filtering meaningful topic evolution patterns. These metrics are particularly useful for the visualization and the exploration of large topic evolution graphs. We also present a first implementation of our model on top of Apache Spark and experimental results obtained for four real-world document archives.
Fichier principal
Vignette du fichier
S2214579621000642.pdf (3.39 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03347058 , version 1 (16-10-2023)

Licence

Identifiants

Citer

Ke Li, Hubert Naacke, Bernd Amann. An Analytic Graph Data Model and Query Language for Exploring the Evolution of Science. Big Data Research, 2021, 26, pp.100247. ⟨10.1016/j.bdr.2021.100247⟩. ⟨hal-03347058⟩
142 Consultations
24 Téléchargements

Altmetric

Partager

More