$p$-adic Directions of Primitive Vectors - Sorbonne Université
Article Dans Une Revue Publications Mathématiques de Besançon. Algèbre et Théorie des Nombres Année : 2023

$p$-adic Directions of Primitive Vectors

Résumé

Linnik type problems concern the distribution of projections of integral points on the unit sphere as their norm increases, and different generalizations of this phenomenon. Our work addresses a question of this type: we prove the uniform distribution of the projections of primitive $\mathbb{Z}^{2}$ points in the $p$-adic unit sphere, as their (real) norm tends to infinity. The proof is via counting lattice points in semi-simple $S$-arithmetic groups.

Dates et versions

hal-03377102 , version 1 (14-10-2021)

Identifiants

Citer

Antonin Guilloux, Tal Horesh. $p$-adic Directions of Primitive Vectors. Publications Mathématiques de Besançon. Algèbre et Théorie des Nombres, 2023, pp.85-107. ⟨10.5802/pmb.50⟩. ⟨hal-03377102⟩
54 Consultations
0 Téléchargements

Altmetric

Partager

More