RIPK3 acts as a lipid metabolism regulator contributing to inflammation and carcinogenesis in non-alcoholic fatty liver disease - Sorbonne Université
Journal Articles Gut Year : 2021

RIPK3 acts as a lipid metabolism regulator contributing to inflammation and carcinogenesis in non-alcoholic fatty liver disease

Enara Arretxe
  • Function : Author
Cristina Alonso
  • Function : Author
Maria Jesus Pareja
  • Function : Author

Abstract

Objective Receptor-interacting protein kinase 3 (RIPK3) is a key player in necroptosis execution and an emerging metabolic regulator, whose contribution to non-alcoholic fatty liver disease (NAFLD) is controversial. We aimed to clarify the impact of RIPK3 signalling in the pathogenesis of human and experimental NAFLD. Design RIPK3 levels were evaluated in two large independent cohorts of patients with biopsy proven NAFLD diagnosis and correlated with clinical and biochemical parameters. Wild-type (WT) or Ripk3-deficient (Ripk3 −/−) mice were fed a choline-deficient L-amino acid-defined diet (CDAA) or an isocaloric control diet for 32 and 66 weeks. Results RIPK3 increased in patients with non-alcoholic steatohepatitis (NASH) in both cohorts, correlating with hepatic inflammation and fibrosis. Accordingly, Ripk3 deficiency ameliorated CDAA-induced inflammation and fibrosis in mice at both 32 and 66 weeks. WT mice on the CDAA diet for 66 weeks developed preneoplastic nodules and displayed increased hepatocellular proliferation, which were reduced in Ripk3 −/− mice. Furthermore, Ripk3 deficiency hampered tumourigenesis. Intriguingly, Ripk3 −/− mice displayed increased body weight gain, while lipidomics showed that deletion of Ripk3 shifted hepatic lipid profiles. Peroxisome proliferator-activated receptor γ (PPARγ) was increased in Ripk3 −/− mice and negatively correlated with hepatic RIPK3 in patients with NAFLD. Mechanistic studies established a functional link between RIPK3 and PPARγ in controlling fat deposition and fibrosis. Conclusion Hepatic RIPK3 correlates with NAFLD severity in humans and mice, playing a key role in managing liver metabolism, damage, inflammation, fibrosis and carcinogenesis. Targeting RIPK3 and its intricate signalling arises as a novel promising approach to treat NASH and arrest disease progression.
Fichier principal
Vignette du fichier
2359.full.pdf (6.76 Mo) Télécharger le fichier
Origin Publication funded by an institution

Dates and versions

hal-03462451 , version 1 (01-12-2021)

Identifiers

Cite

Marta B Afonso, Pedro M Rodrigues, Miguel Mateus-Pinheiro, André L Simão, Maria M Gaspar, et al.. RIPK3 acts as a lipid metabolism regulator contributing to inflammation and carcinogenesis in non-alcoholic fatty liver disease. Gut, 2021, 70 (12), pp.2359-2372. ⟨10.1136/gutjnl-2020-321767⟩. ⟨hal-03462451⟩
46 View
28 Download

Altmetric

Share

More