Data-QuestEval: A Reference-less Metric for Data-to-Text Semantic Evaluation
Abstract
QUESTEVAL is a reference-less metric used in text-to-text tasks, that compares the generated summaries directly to the source text, by automatically asking and answering questions. Its adaptation to Data-to-Text tasks is not straightforward as it requires multimodal Question Generation and Answering systems on the considered tasks, which are seldom available. To this purpose, we propose a method to build synthetic multimodal corpora enabling to train multimodal components for a data-QuestEval metric. The resulting metric is reference-less and multimodal; it obtains state-of-the-art correlations with human judgment on the WebNLG and WikiBio benchmarks. We make data-QUESTEVAL's code and models available for reproducibility purpose, as part of the QUESTEVAL project. 1
Domains
Artificial Intelligence [cs.AI]Origin | Files produced by the author(s) |
---|