Epistatic models predict mutable sites in SARS-CoV-2 proteins and epitopes - Sorbonne Université
Journal Articles Proceedings of the National Academy of Sciences of the United States of America Year : 2022

Epistatic models predict mutable sites in SARS-CoV-2 proteins and epitopes

Abstract

The emergence of new variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a major concern given their potential impact on the transmissibility and pathogenicity of the virus as well as the efficacy of therapeutic interventions. Here, we predict the mutability of all positions in SARS-CoV-2 protein domains to forecast the appearance of unseen variants. Using sequence data from other coronaviruses, preexisting to SARS-CoV-2, we build statistical models that not only capture amino acid conservation but also more complex patterns resulting from epistasis. We show that these models are notably superior to conservation profiles in estimating the already observable SARS-CoV-2 variability. In the receptor binding domain of the spike protein, we observe that the predicted mutability correlates well with experimental measures of protein stability and that both are reliable mutability predictors (receiver operating characteristic areas under the curve ∼0.8). Most interestingly, we observe an increasing agreement between our model and the observed variability as more data become available over time, proving the anticipatory capacity of our model. When combined with data concerning the immune response, our approach identifies positions where current variants of concern are highly overrepresented. These results could assist studies on viral evolution and future viral outbreaks and, in particular, guide the exploration and anticipation of potentially harmful future SARS-CoV-2 variants.
Fichier principal
Vignette du fichier
e2113118119.full.pdf (1.46 Mo) Télécharger le fichier
Origin Publication funded by an institution

Dates and versions

hal-03528553 , version 1 (17-01-2022)

Identifiers

Cite

Juan Rodriguez-Rivas, Giancarlo Croce, Maureen Muscat, Martin Weigt. Epistatic models predict mutable sites in SARS-CoV-2 proteins and epitopes. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119 (4), pp.e2113118119. ⟨10.1073/pnas.2113118119/-/DCSupplemental.⟩. ⟨hal-03528553⟩
89 View
108 Download

Altmetric

Share

More