Electrochemical Storage of Atomic Hydrogen on Single Layer Graphene - Sorbonne Université
Journal Articles Journal of the American Chemical Society Year : 2021

Electrochemical Storage of Atomic Hydrogen on Single Layer Graphene

Abstract

If hydrogen can be stored and carried safely at a high density, hydrogen-fuel cells offer effective solutions for vehicles. The stable chemisorption of atomic hydrogen on single layer graphene (SLG) seems a perfect solution in this regard, with a theoretical maximum storage capacity of 7.7 wt %. However, generating hydrogenated graphene from H2 requires extreme temperatures and pressures. Alternatively, hydrogen adatoms can easily be produced under mild conditions by the electroreduction of protons in solid/liquid systems. Graphene is electrochemically inert for this reaction, but H-chemisorption on SLG can be carried out under mild conditions via a novel Pt-electrocatalyzed "spillover-surface diffusion-chemisorption" mechanism, as we demonstrate using dynamic electrochemistry and isotopic Raman spectroscopy. The apparent surface diffusion coefficient (∼10-5 cm2 s-1), capacity (∼6.6 wt %, ∼85.7% surface coverage), and stability of hydrogen adatoms on SLG at room temperature and atmospheric pressure are significant, and they are perfectly suited for applications involving stored hydrogen atoms on graphene.
Fichier principal
Vignette du fichier
He et al. - 2021 - Electrochemical Storage of Atomic Hydrogen on Sing.pdf (556.67 Ko) Télécharger le fichier
Origin Files produced by the author(s)

Dates and versions

hal-03551357 , version 1 (01-02-2022)

Identifiers

Cite

Quanfeng He, Lanping Zeng, Lianhuan Han, Matthew M Sartin, Juan Peng, et al.. Electrochemical Storage of Atomic Hydrogen on Single Layer Graphene. Journal of the American Chemical Society, 2021, 143 (44), pp.18419-18425. ⟨10.1021/jacs.1c05253⟩. ⟨hal-03551357⟩
60 View
214 Download

Altmetric

Share

More