Molecular origins of induction and loss of photoinhibition-related energy dissipation q I - Sorbonne Université
Journal Articles Science Advances Year : 2021

Molecular origins of induction and loss of photoinhibition-related energy dissipation q I

Abstract

Photosynthesis fuels life on Earth using sunlight as energy source. However, light has a simultaneous detrimental effect on the enzyme triggering photosynthesis and producing oxygen, photosystem II (PSII). Photoinhibition, the light-dependent decrease of PSII activity, results in a major limitation to aquatic and land photosynthesis and occurs upon all environmental stress conditions. In this work, we investigated the molecular origins of photoinhibition focusing on the paradoxical energy dissipation process of unknown nature coinciding with PSII damage. Integrating spectroscopic, biochemical, and computational approaches, we demonstrate that the site of this quenching process is the PSII reaction center. We propose that the formation of quenching and the closure of PSII stem from the same event. We lastly reveal the heterogeneity of PSII upon photoinhibition using structure-function modeling of excitation energy transfer. This work unravels the functional details of the damage-induced energy dissipation at the heart of photosynthesis.
Fichier principal
Vignette du fichier
sciadv.abj0055.pdf (4.97 Mo) Télécharger le fichier
Origin Publication funded by an institution

Dates and versions

hal-03560130 , version 1 (07-02-2022)

Identifiers

Cite

Wojciech J Nawrocki, Xin Liu, Bailey Raber, Chen Hu, Catherine de Vitry, et al.. Molecular origins of induction and loss of photoinhibition-related energy dissipation q I. Science Advances , 2021, 7 (52), pp.eabj0055. ⟨10.1126/sciadv.abj0055⟩. ⟨hal-03560130⟩
29 View
70 Download

Altmetric

Share

More