Mitonuclear discordance and patterns of reproductive isolation in a complex of simultaneously hermaphroditic species, the Allolobophora chlorotica case study
Abstract
Historical events of population fragmentation, expansion and admixture over geological time may result in complex patterns of reproductive isolation and may explain why, for some taxa, the study of mitochondrial (mt) and nuclear (nu) genetic data results in discordant evolutionary patterns. Complex patterns of taxonomic diversity were recently revealed in earthworms for which distribution is largely the result of paleogeographical events. Here, we investigated reproductive isolation patterns in a complex of cryptic species of earthworms in which discordant patterns between mt and nu genetic lineages were previously revealed, the Allolobophora chlorotica aggregate. Using four nu microsatellite markers and a fragment of the cytochrome c oxidase subunit I mt gene we carried out a parentage analysis to investigate the mating patterns (i) between individuals belonging to two divergent mt lineages that cannot be distinguished with nu markers and (ii) between individuals belonging to lineages that are differentiated both at the mt and nu levels. Among the 157 field collected individuals, 66 adults were used in cross-breeding experiments to form 22 trios based on their assignment to a mt lineage, and 453 obtained juveniles were genotyped. We showed that adults that mated with both their potential mates in the trio produced significantly more juveniles. In crosses between lineages that diverged exclusively at the mt level, a sex-specific pattern of reproduction characteristic to each lineage was observed, suggesting a possible conflict of interest concerning the use of male/female function between mating partners. In crosses between lineages that diverged both at the mt and nu level, a high production of cocoons was counterbalanced by a low hatching rate, suggesting a post-zygotic reproductive isolation. Different degrees of reproductive isolation, from differential sex allocation to post-zygotic isolation, were thus revealed. Lineages appear to be at different stages in the speciation process, which likely explain the observed opposite patterns of mito-nuclear congruence.
Origin | Publication funded by an institution |
---|