C3−H Silylation of Furfurylimines: Direct Access to a Novel Biobased Versatile Synthetic Platform Derived from Furfural
Abstract
Herein we report directed iridium-catalyzed C3-H silylation of furfuryl imines, which grants access to versatile synthetic platforms. This transformation was developed on furfuryl derivatives, using imines as directing groups, and trialkylsilanes or bis(trimethylsilyl)methylsilane as silylating agents, in the presence of a hydride scavenger. Subsequently, fluoride-mediated activation strategies were applied to the C3-SiMe(OSiMe3)2 furfural derivatives to achieve a wide range of transformations of the C3-Si bond. Arylation, alkenylation, alkynylation, allylation and alkylation, as well as halogenation and trifluoromethylation were achieved in modest to high yields. A variety of high value-added products were thus easily obtained from the same common C3-silylated furfural-based platform.
Origin | Files produced by the author(s) |
---|