Accommodating Individual Travel History and Unsampled Diversity in Bayesian Phylogeographic Inference of SARS-CoV-2 - Sorbonne Université Access content directly
Journal Articles Nature Communications Year : 2020

Accommodating Individual Travel History and Unsampled Diversity in Bayesian Phylogeographic Inference of SARS-CoV-2

Abstract

Abstract Spatiotemporal bias in genome sampling can severely confound discrete trait phylogeographic inference. This has impeded our ability to accurately track the spread of SARS-CoV-2, the virus responsible for the COVID-19 pandemic, despite the availability of unprecedented numbers of SARS-CoV-2 genomes. Here, we present an approach to integrate individual travel history data in Bayesian phylogeographic inference and apply it to the early spread of SARS-CoV-2. We demonstrate that including travel history data yields i) more realistic hypotheses of virus spread and ii) higher posterior predictive accuracy compared to including only sampling location. We further explore methods to ameliorate the impact of sampling bias by augmenting the phylogeographic analysis with lineages from undersampled locations. Our reconstructions reinforce specific transmission hypotheses suggested by the inclusion of travel history data, but also suggest alternative routes of virus migration that are plausible within the epidemiological context but are not apparent with current sampling efforts.

Dates and versions

hal-03846544 , version 1 (10-11-2022)

Identifiers

Cite

Philippe Lemey, Samuel L. Hong, Verity Hill, Guy Baele, Chiara Poletto, et al.. Accommodating Individual Travel History and Unsampled Diversity in Bayesian Phylogeographic Inference of SARS-CoV-2. Nature Communications, 2020, 11 (1), pp.5110. ⟨10.1038/s41467-020-18877-9⟩. ⟨hal-03846544⟩
15 View
0 Download

Altmetric

Share

Gmail Mastodon Facebook X LinkedIn More