Learning 4DVAR Inversion Directly From Observations - Sorbonne Université Access content directly
Preprints, Working Papers, ... (Preprint) Year : 2022

Learning 4DVAR Inversion Directly From Observations


Variational data assimilation and deep learning share many algorithmic aspects in common. While the former focuses on system state estimation, the latter provides great inductive biases to learn complex relationships. We here design a hybrid architecture learning the assimilation task directly from partial and noisy observations, using the mechanistic constraint of the 4DVAR algorithm. Finally, we show in an experiment that the proposed method was able to learn the desired inversion with interesting regularizing properties and that it also has computational interests.
Fichier principal
Vignette du fichier
main.pdf (533.95 Ko) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-03863390 , version 1 (21-11-2022)
hal-03863390 , version 2 (05-04-2023)


  • HAL Id : hal-03863390 , version 1


Arthur Filoche, Julien Brajard, Anastase Charantonis, Dominique Béréziat. Learning 4DVAR Inversion Directly From Observations. 2022. ⟨hal-03863390v1⟩
123 View
102 Download


Gmail Facebook X LinkedIn More