Finite element methods for Darcy’s problem coupled with the heat equation - Sorbonne Université
Article Dans Une Revue Numerische Mathematik Année : 2018

Finite element methods for Darcy’s problem coupled with the heat equation

Christine Bernardi
  • Fonction : Auteur
Séréna Dib
  • Fonction : Auteur
Vivette Girault
  • Fonction : Auteur
Frédéric Hecht
  • Fonction : Auteur
François Murat
  • Fonction : Auteur
  • PersonId : 828520
Toni Sayah
  • Fonction : Auteur

Résumé

In this article, we study theoretically and numerically the heat equation coupled with Darcy’s law by a nonlinear viscosity depending on the temperature. We establish existence of a solution by using a Galerkin method and we prove uniqueness. We propose and analyze two numerical schemes based on finite element methods. An optimal a priori error estimate is then derived for each numerical scheme. Numerical experiments are presented that confirm the theoretical accuracy of the discretization. ------------------------- This paper has been published in Numer. Math., 139, (2018), pp. 315-348, doi 10.1007/s00211-017-0938-y
Fichier non déposé

Dates et versions

hal-03878535 , version 1 (29-11-2022)

Identifiants

Citer

Christine Bernardi, Séréna Dib, Vivette Girault, Frédéric Hecht, François Murat, et al.. Finite element methods for Darcy’s problem coupled with the heat equation. Numerische Mathematik, 2018, 139 (2), pp.315-348. ⟨10.1007/s00211-017-0938-y⟩. ⟨hal-03878535⟩
27 Consultations
0 Téléchargements

Altmetric

Partager

More