On the Maxwell-wave equation coupling problem and its explicit finite-element solution
Résumé
It is well known that in the case of constant dielectric permittivity and magnetic permeability, the electric field solving the Maxwell's equations is also a solution to the wave equation. The converse is also true under certain conditions. Here we study an intermediate situation in which the magnetic permeability is constant and a region with variable dielectric permittivity is surrounded by a region with a constant one, in which the unknown field satisfies the wave equation. In this case, such a field will be the solution of Maxwell's equation in the whole domain, as long as proper conditions are prescribed on its boundary. We show that an explicit finite-element scheme can be used to solve the resulting Maxwell-wave equation coupling problem in an inexpensive and reliable way. Optimal convergence in natural norms under reasonable assumptions holds for such a scheme, which is certified by numerical exemplification.