Distinction between 2′- and 3′-Phosphate Isomers of a Fluorescent NADPH Analogue Led to Strong Inhibition of Cancer Cells Migration
Abstract
Specific inhibition of NADPH oxidases (NOX) and NO-synthases (NOS), two enzymes associated with redox stress in tumor cells, has aroused great pharmacological interest. Here, we show how these enzymes distinguish between isomeric 2′-and 3′-phosphate derivatives, a difference used to improve the specificity of inhibition by isolated 2′-and 3′-phosphate isomers of our NADPH analogue NS1. Both isomers become fluorescent upon binding to their target proteins as observed by in vitro assay and in vivo imaging. The 2′-phosphate isomer of NS1 exerted more pronounced effects on NOS and NOX-dependent physiological responses than the 3′-phosphate isomer did. Docking and molecular dynamics simulations explain this specificity at the level of the NADPH site of NOX and NOS, where conserved arginine residues distinguished between the 2′-phosphate over the 3′-phosphate group, in favor of the 2′-phosphate.
Origin | Files produced by the author(s) |
---|