The Influence of TiO2 Nanoparticles Morphologies on the Performance of Lithium-Ion Batteries
Abstract
Anode materials based on the TiO2 nanoparticles of different morphologies were prepared using the hydrothermal method and characterized by various techniques, such as X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), and N2 absorption. The TiO2 nanoparticles prepared were used as anode materials for lithium-ion batteries (LIBs), and their electrochemical properties were tested using discharging/charging measurements. The results showed that the initial morphology of the nanoparticles plays a minor role in battery performance after the first few cycles and that better capacity was achieved for TiO2 nanobelt morphology. The sharp drop in the specific capacity of LIB during their first cycles is examined by considering changes in the morphology of TiO2 particles and their porosity properties in terms of size and connectivity. The performance of TiO2 anode materials has also been assessed by considering their phase.
Domains
Chemical SciencesOrigin | Publisher files allowed on an open archive |
---|