Regulation of Energy Expenditure by Brainstem GABA Neurons - Sorbonne Université Access content directly
Journal Articles Cell Year : 2019

Regulation of Energy Expenditure by Brainstem GABA Neurons


Homeostatic control of core body temperature is essential for survival. Temperature is sensed by specific neurons, in turn eliciting both behavioral (i.e., locomotion) and physiologic (i.e., thermogenesis, vasodilatation) responses. Here, we report that a population of GABAergic (Vgat-expressing) neurons in the dorsolateral portion of the dorsal raphe nucleus (DRN), hereafter DRNVgat neurons, are activated by ambient heat and bidirectionally regulate energy expenditure through changes in both thermogenesis and locomotion. We find that DRNVgat neurons innervate brown fat via a descending projection to the raphe pallidus (RPa). These neurons also densely innervate ascending targets implicated in the central regulation of energy expenditure, including the hypothalamus and extended amygdala. Optogenetic stimulation of different projection targets reveals that DRNVgat neurons are capable of regulating thermogenesis through both a “direct” descending pathway through the RPa and multiple “indirect” ascending pathways. This work establishes a key regulatory role for DRNVgat neurons in controlling energy expenditure.

Dates and versions

hal-04550289 , version 1 (17-04-2024)



Marc Schneeberger, Luca Parolari, Tania das Banerjee, Varun Bhave, Putianqi Wang, et al.. Regulation of Energy Expenditure by Brainstem GABA Neurons. Cell, 2019, 178 (3), pp.672-685.e12. ⟨10.1016/j.cell.2019.05.048⟩. ⟨hal-04550289⟩
11 View
0 Download



Gmail Facebook X LinkedIn More