Couple axial gradients of potential and concentration in a cylindrical pore electrode: an impedance model
Abstract
The impedance of a cylindrical pore electrode in the case where the potential gradient due to the electrolyte resistivity is coupled to the axial concentration gradient of reacting species has been calculated semi-analytically from the approximate solution reported previously for the steady-state concentration and current profiles in the pore. Complex plane impedance plots, computed by an iteration technique for the transmission line, indicate: (i) a quasi-semi-circular diffusion loop at low frequencies due to diffusion control; and (ii) a high frequency loop in which the frequency dispersion is strongly dependent on the electrode parameters (electrolyte resistivity, diffusion coefficient of the reacting species, pore depth, Tafel coefficient of the electrochemical reaction and overall current flowing through the pore).