Learning iterative algorithms to solve PDEs - Sorbonne Université
Communication Dans Un Congrès Année : 2024

Learning iterative algorithms to solve PDEs

Apprentissage d'algorithmes itératifs pour résoudre des EDPs

Résumé

In this work, we propose a new method to solve partial differential equations (PDEs). Taking inspiration from traditional numerical methods, we view approximating solutions to PDEs as an iterative algorithm, and propose to learn the iterations from data. With respect to directly predicting the solution with a neural network, our approach has access to the PDE, having the potential to enhance the model's ability to generalize across a variety of scenarios, such as differing PDE parameters, initial or boundary conditions. We instantiate this framework and empirically validate its effectiveness across several PDE-solving benchmarks, evaluating efficiency and generalization capabilities, and demonstrating its potential for broader applicability.
Fichier principal
Vignette du fichier
69_Learning_iterative_algorith.pdf (1.38 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Licence

Dates et versions

hal-04821571 , version 1 (05-12-2024)

Licence

Identifiants

  • HAL Id : hal-04821571 , version 1

Citer

Lise Le Boudec, Emmanuel de Bézenac, Louis Serrano, Yuan Yin, Patrick Gallinari. Learning iterative algorithms to solve PDEs. ICLR 2024 Workshop on AI4DifferentialEquations In Science, ICLR 2024 Workshop, May 2024, Vienne (Austria), France. https://ai4diffeqtnsinsci.github.io. ⟨hal-04821571⟩
0 Consultations
0 Téléchargements

Partager

More