Total synthesis of a functional designer eukaryotic chromosome.
Narayana Annaluru
(1)
,
Héloïse Muller
(2, 1, 3)
,
Leslie A. Mitchell
(4)
,
Sivaprakash Ramalingam
(5)
,
Giovanni Stracquadanio
(3, 6)
,
Sarah M Richardson
(6)
,
Jessica S. Dymond
(7)
,
Zheng Kuang
(3)
,
Lisa Z. Scheifele
(3, 8)
,
Eric M. Cooper
(3)
,
Yizhi Cai
(9, 10)
,
Karen Zeller
(3)
,
Neta Agmon
(3, 4)
,
Jeffrey S. Han
(11)
,
Michalis Hadjithomas
(12)
,
Jennifer Tullman
(6)
,
Katrina Caravelli
(3, 13)
,
Kimberly Cirelli
(1, 13)
,
Zheyuan Guo
(1, 14)
,
Viktoriya London
(1, 14)
,
Apurva Yeluru
(1, 14)
,
Sindurathy Murugan
(6)
,
Karthikeyan Kandavelou
(1, 15)
,
Nicolas Agier
(16)
,
Gilles Fischer
(16)
,
Kun Yang
(3, 6)
,
J. Andrew Martin
(3, 6)
,
Murat Bilgel
(14)
,
Pavlo Bohutskyi
(14)
,
Kristin M. Boulier
(13)
,
Brian J. Capaldo
(14)
,
Joy Chang
(14)
,
Kristie Charoen
(14)
,
Woo Jin Choi
(14)
,
Peter Deng
(12)
,
James E Dicarlo
(14)
,
Judy Doong
(14)
,
Jessilyn Dunn
(14)
,
Jason I Feinberg
(13)
,
Christopher Fernandez
(13)
,
Charlotte E Floria
(13)
,
David Gladowski
(13)
,
Pasha Hadidi
(14)
,
Isabel Ishizuka
(13)
,
Javaneh Jabbari
(13)
,
Calvin Y. L. Lau
(14)
,
Pablo A. Lee
(14)
,
Sean Li
(14)
,
Denise Lin
(13)
,
Matthias E. Linder
(13)
,
Jonathan Ling
(14)
,
Jaime Liu
(14)
,
Jonathan Liu
(14)
,
Mariya London
(13)
,
Henry Ma
(14)
,
Jessica Mao
(14)
,
Jessica E Mcdade
(14)
,
Alex Mcmillan
(13)
,
Aaron M Moore
(13)
,
Won Chan Oh
(14)
,
Yu Ouyang
(14)
,
Ruchi Patel
(14)
,
Marina Paul
(13)
,
Laura C Paulsen
(14)
,
Judy Qiu
(14)
,
Alex Rhee
(14)
,
Matthew G Rubashkin
(14)
,
Ina Y. Soh
(13)
,
Nathaniel E Sotuyo
(13)
,
Venkatesh Srinivas
(14)
,
Allison Suarez
(14)
,
Andy Wong
(14)
,
Remus Wong
(14)
,
Wei Rose Xie
(13)
,
Yijie Xu
(14)
,
Allen T Yu
(13)
,
Romain Koszul
(2)
,
Joel S. Bader
(3, 6)
,
Jef D Boeke
(3, 4, 12)
,
Srinivasan Chandrasegaran
(1)
1
Department of Environmental Health Sciences [JHU Baltimore]
2 Régulation spatiale des Génomes - Spatial Regulation of Genomes
3 High Throughput Biology Center [Baltimore]
4 NYU Langone Medical Center - New York University Langone Medical Center
5 JHU - Johns Hopkins University
6 Department of Biomedical Engineering and Institute of Genetic Medicine, Whiting School of Engineering
7 Biological Sciences, Research and Exploratory Development Department [Laurel]
8 Department of Biology [Loloya U. Baltimore]
9 Johns Hopkins University School of Medicine [Baltimore]
10 Edin. - University of Edinburgh
11 Carnegie Institution for Science
12 Department of Biology [JHU Baltimore]
13 Krieger School of Arts and Sciences [Baltimore]
14 Whiting School of Engineering [Baltimore]
15 Pondicherry Biotech Private Limited
16 LGM - Génomique des Microorganismes
2 Régulation spatiale des Génomes - Spatial Regulation of Genomes
3 High Throughput Biology Center [Baltimore]
4 NYU Langone Medical Center - New York University Langone Medical Center
5 JHU - Johns Hopkins University
6 Department of Biomedical Engineering and Institute of Genetic Medicine, Whiting School of Engineering
7 Biological Sciences, Research and Exploratory Development Department [Laurel]
8 Department of Biology [Loloya U. Baltimore]
9 Johns Hopkins University School of Medicine [Baltimore]
10 Edin. - University of Edinburgh
11 Carnegie Institution for Science
12 Department of Biology [JHU Baltimore]
13 Krieger School of Arts and Sciences [Baltimore]
14 Whiting School of Engineering [Baltimore]
15 Pondicherry Biotech Private Limited
16 LGM - Génomique des Microorganismes
Héloïse Muller
- Fonction : Auteur
- PersonId : 749990
- IdHAL : heloise-muller
- ORCID : 0000-0003-0853-822X
Gilles Fischer
- Fonction : Auteur
- PersonId : 740227
- IdHAL : gilles-fischer
- ORCID : 0000-0001-5732-2682
- IdRef : 139512624
Kun Yang
- Fonction : Auteur
- PersonId : 758349
- ORCID : 0000-0002-0809-2371
Romain Koszul
- Fonction : Auteur
- PersonId : 734994
- IdHAL : romain-koszul
- ORCID : 0000-0002-3086-1173
- IdRef : 08902673X
Résumé
Rapid advances in DNA synthesis techniques have made it possible to engineer viruses, biochemical pathways and assemble bacterial genomes. Here, we report the synthesis of a functional 272,871-base pair designer eukaryotic chromosome, synIII, which is based on the 316,617-base pair native Saccharomyces cerevisiae chromosome III. Changes to synIII include TAG/TAA stop-codon replacements, deletion of subtelomeric regions, introns, transfer RNAs, transposons, and silent mating loci as well as insertion of loxPsym sites to enable genome scrambling. SynIII is functional in S. cerevisiae. Scrambling of the chromosome in a heterozygous diploid reveals a large increase in a-mater derivatives resulting from loss of the MATα allele on synIII. The complete design and synthesis of synIII establishes S. cerevisiae as the basis for designer eukaryotic genome biology.