Deep Multimodal Learning for Joint Textual and Visual Reasoning - Sorbonne Université
Theses Year : 2020

Deep Multimodal Learning for Joint Textual and Visual Reasoning

Apprentissage multimodal profond pour un raisonnement textuel et visuel joint

Abstract

In the last decade, the evolution of Deep Learning techniques to learn meaningful data representations for text and images, combined with an important increase of multimodal data, mainly from social network and e-commerce websites, has triggered a growing interest in the research community about the joint understanding of language and vision. The challenge at the heart of Multimodal Machine Learning is the intrinsic difference in semantics between language and vision: while vision faithfully represents reality and conveys low-level semantics, language is a human construction carrying high-level reasoning. One the one hand, language can enhance the performance of vision models. The underlying hypothesis is that textual representations contain visual information. We apply this principle to two Zero-Shot Learning tasks. In the first contribution on ZSL, we extend a common assumption in ZSL, which states that textual representations encode information about the visual appearance of objects, by showing that they also encode information about their visual surroundings and their real-world frequence. In a second contribution, we consider the transductive setting in ZSL. We propose a solution to the limitations of current transductive approaches, that assume that the visual space is well-clustered, which does not hold true when the number of unknown classes is high. On the other hand, vision can expand the capacities of language models. We demonstrate it by tackling Visual Question Generation (VQG), which extends the standard Question Generation task by using an image as complementary input, by using visual representations derived from Computer Vision.
Au cours de la dernière décennie, l'évolution des techniques d'apprentissage en profondeur, combinée à une augmentation importante des données multimodales a suscité un intérêt croissant dans la communauté de recherche pour la compréhension conjointe du langage et de la vision. Le défi au cœur de l'apprentissage automatique multimodal est la différence sémantique entre le langage et la vision: alors que la vision représente fidèlement la réalité et transmet une sémantique de bas niveau, le langage porte un raisonnement de haut niveau. D'une part, le langage peut améliorer les performances des modèles de vision. L'hypothèse sous-jacente est que les représentations textuelles contiennent des informations visuelles. Nous appliquons ce principe au Zero-Shot Learning. Dans la première contribution en ZSL, nous étendons une hypothèse commune, qui stipule que les représentations textuelles codent des informations sur l'apparence visuelle des objets, en montrant qu'elles codent également des informations sur leur environnement visuel et leur fréquence réelle. Dans une seconde contribution, nous considérons le cadre transductif en ZSL. Nous proposons une solution aux limites des approches transductives actuelles, qui supposent que l'espace visuel est bien groupé, ce qui n'est pas vrai lorsque le nombre de classes inconnues est élevé. D'un autre côté, la vision peut élargir les capacités des modèles linguistiques. Nous le démontrons en abordant la génération de questions visuelles (VQG), qui étend la tâche standard de génération de questions en utilisant une image comme entrée complémentaire, en utilisant des représentations visuelles dérivées de la vision par ordinateur.
Fichier principal
Vignette du fichier
BORDES_Patrick_these_2020.pdf (15.31 Mo) Télécharger le fichier
Origin Version validated by the jury (STAR)

Dates and versions

tel-03951566 , version 1 (23-01-2023)
tel-03951566 , version 2 (14-02-2023)

Identifiers

  • HAL Id : tel-03951566 , version 2

Cite

Patrick Bordes. Deep Multimodal Learning for Joint Textual and Visual Reasoning. Machine Learning [cs.LG]. Sorbonne Université, 2020. English. ⟨NNT : 2020SORUS370⟩. ⟨tel-03951566v2⟩
153 View
74 Download

Share

More