Bernoulli variational problem and beyond - Sorbonne Université
Article Dans Une Revue Archive for Rational Mechanics and Analysis Année : 2014

Bernoulli variational problem and beyond

Résumé

The question of 'cutting the tail' of the solution of an elliptic equation arises naturally in several contexts and leads to a singular perturbation problem under the form of a strong cut-off. We consider both the PDE with a drift and the symmetric case where a variational problem can be stated. It is known that, in both cases, the same critical scale arises for the size of the singular perturbation. More interesting is that in both cases another critical parameter (of order one) arises that decides when the limiting behaviour is non-degenerate. We study both theoretically and numerically the values of this critical parameter and, in the symmetric case, ask if the variational solution leads to the same value as for the maximal solution of the PDE. Finally we propose a weak formulation of the limiting Bernoulli problem which incorporates both Dirichlet and Neumann boundary condition.
Fichier principal
Vignette du fichier
ABP28.pdf (333.42 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00881760 , version 1 (08-11-2013)

Identifiants

Citer

Alexander Lorz, Peter Markowich, Benoît Perthame. Bernoulli variational problem and beyond. Archive for Rational Mechanics and Analysis, 2014, 212, pp.415-443. ⟨10.1007/s00205-013-0707-8⟩. ⟨hal-00881760⟩
897 Consultations
609 Téléchargements

Altmetric

Partager

More