Finite-time blowup for a complex Ginzburg-Landau equation - Sorbonne Université
Article Dans Une Revue SIAM Journal on Mathematical Analysis Année : 2013

Finite-time blowup for a complex Ginzburg-Landau equation

Résumé

We prove that negative energy solutions of the complex Ginzburg--Landau equation $e^{-i\theta } u_t = \Delta u+ |u|^\alpha u$ blow up in finite time, where $\alpha >0$ and $-\pi /2<\theta <\pi /2$. For a fixed initial value $u(0)$, we obtain estimates of the blow-up time $T_{\mathrm{max}}^\theta $ as $\theta \to \pm \pi /2 $. It turns out that $T_{\mathrm{max}}^\theta $ stays bounded (respectively, goes to infinity) as $\theta \to \pm \pi /2 $ in the case where the solution of the limiting nonlinear Schrödinger equation blows up in finite time (respectively, is global).
Fichier principal
Vignette du fichier
120878690.pdf (312.78 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-00906888 , version 1 (20-11-2013)

Identifiants

Citer

Thierry Cazenave, Flavio Dickstein, Fred B. Weissler. Finite-time blowup for a complex Ginzburg-Landau equation. SIAM Journal on Mathematical Analysis, 2013, 45 (1), pp.244-268. ⟨10.1137/120878690⟩. ⟨hal-00906888⟩
196 Consultations
260 Téléchargements

Altmetric

Partager

More