Mathematical Analysis of a System for Biological Network Formation - Sorbonne Université Access content directly
Journal Articles Communications in Partial Differential Equations Year : 2015

Mathematical Analysis of a System for Biological Network Formation


Motivated by recent physics papers describing rules for natural network formation, we study an elliptic-parabolic system of partial differential equations proposed by Hu and Cai \cite{Hu, Hu-Cai}. The model describes the pressure field thanks to Darcy's type equation and the dynamics of the conductance network under pressure force effects with a diffusion rate $D$ representing randomness in the material structure. We prove the existence of global weak solutions and of local mild solutions and study their long term behavior. It turns out that, by energy dissipation, steady states play a central role to understand the pattern capacity of the system. We show that for a large diffusion coefficient $D$, the zero steady state is stable. Patterns occur for small values of $D$ because the zero steady state is Turing unstable in this range; for $D=0$ we can exhibit a large class of dynamically stable (in the linearized sense) steady states.
Fichier principal
Vignette du fichier
NetworkFormation_7May2014.pdf (340.98 Ko) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-00998344 , version 1 (01-06-2014)



Jan Haskovec, Peter Markowich, Benoît Perthame. Mathematical Analysis of a System for Biological Network Formation. Communications in Partial Differential Equations, 2015, 40 (5), pp.918-956. ⟨10.1080/03605302.2014.968792⟩. ⟨hal-00998344⟩
420 View
280 Download



Gmail Facebook X LinkedIn More