Uncertainty propagation; intrusive kinetic formulations of scalar conservation laws - Sorbonne Université
Article Dans Une Revue SIAM/ASA Journal on Uncertainty Quantification Année : 2016

Uncertainty propagation; intrusive kinetic formulations of scalar conservation laws

Propagation d'incertitudes: formulation cinétique intrusive pour les lois de conservation

Résumé

We study two intrusive methods for uncertainty propagation in scalar conservation laws based on their kinetic formulations. The first method uses convolutions with Jackson kernels based on expansions on an orthogonal family of polynomials and we prove that it satisfies BV bounds and converges to the entropy solution but with a spurious damping phenomenon. Therefore we introduce a second method, which is based on projection on layered Maxellians, and which arises as a minimization of entropy. Our construction of layered Maxwellians relies on the Bojavic-Devore theorem about best L 1 polynomial approximation. This new method, denoted below as a kinetic polynomial method, satisfies the maximum principle by construction as well as partial entropy inequalities and thus provides an alternative to the standard method of moments which, in general, does not satisfy the maximum principle. Simple numerical simulations for the Burgers equation illustrate these theoretical results.
Nous étudions deux formulations cinétiques des lois de conservation.
Fichier principal
Vignette du fichier
Incertitude_52.pdf (982.83 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01146188 , version 1 (27-04-2015)

Licence

Copyright (Tous droits réservés)

Identifiants

  • HAL Id : hal-01146188 , version 1

Citer

Bruno Després, Benoît Perthame. Uncertainty propagation; intrusive kinetic formulations of scalar conservation laws. SIAM/ASA Journal on Uncertainty Quantification, 2016, 4 (1), pp.980-1013. ⟨hal-01146188⟩
409 Consultations
375 Téléchargements

Partager

More