From an initial data to a global solution of the nonlinear Schrödinger equation: a building process - Sorbonne Université
Article Dans Une Revue International Mathematics Research Notices Année : 2015

From an initial data to a global solution of the nonlinear Schrödinger equation: a building process

Claire David
  • Fonction : Auteur
  • PersonId : 1262788
  • IdHAL : cldavid

Résumé

The purpose of this work is to construct a continuous map from the homogeneous Besov space B^02,4(R^2) in the set G of initial data in B^02,4(R^2) which gives birth to global solution of the mass critical non linear Schrödinger equation in the space L^4(R^1+2). We use the fact that solutions of scale which are different enough almost do not interact; the main point is that we determine a condition about the size of the scale which depends continuously on the data.
Fichier principal
Vignette du fichier
NLS_IMRN_19_05_2015 - Preprint.pdf (207.52 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01298989 , version 1 (06-04-2016)

Identifiants

Citer

Jean-Yves Chemin, Claire David. From an initial data to a global solution of the nonlinear Schrödinger equation: a building process. International Mathematics Research Notices, 2015, 2016 (8), pp.2376-2396. ⟨10.1093/imrn/rnv199⟩. ⟨hal-01298989⟩
128 Consultations
140 Téléchargements

Altmetric

Partager

More