Synthesis of Membrane-Electrode Assembly for Fuel Cells by Means of (Sub)-Atmospheric Plasma Processes
Abstract
An easy procedure to build up membrane-electrode assemblies for applications dedicated to miniaturized PEMFC using H2 or CH3OH by a two-steps atmospheric plasma process is reported. Firstly, catalyst nanoparticles are grafted on carbon substrates by spraying a Pt colloidal solution in the post-discharge of an RF atmospheric plasma torch. In the second step, the resulting decorated electrodes are covered by plasma synthesized polymeric membranes in the discharge of a DBD. The sulfonated polystyrene membranes are synthesized
by injecting simultaneously styrene and trifluoromethanesulfonic acid monomers, in the presence of a carrier gas (Ar or He). The membranes are chemically characterized by XPS, ToF-SIMS, and FTIR (IRRAS) and their deposition rate is investigated by SEM.
Origin | Files produced by the author(s) |
---|