Semi-blind Bayesian inference of CMB map and power spectrum - Sorbonne Université
Article Dans Une Revue Astronomy & Astrophysics - A&A Année : 2016

Semi-blind Bayesian inference of CMB map and power spectrum

Résumé

We present a new blind formulation of the cosmic microwave background (CMB) inference problem. The approach relies on a phenomenological model of the multifrequency microwave sky without the need for physical models of the individual components. For all-sky and high resolution data, it unifies parts of the analysis that had previously been treated separately such as component separation and power spectrum inference. We describe an efficient sampling scheme that fully explores the component separation uncertainties on the inferred CMB products such as maps and/or power spectra. External information about individual components can be incorporated as a prior giving a flexible way to progressively and continuously introduce physical component separation from a maximally blind approach. We connect our Bayesian formalism to existing approaches such as Commander, spectral mismatch independent component analysis (SMICA), and internal linear combination (ILC), and discuss possible future extensions.
Fichier principal
Vignette du fichier
1409.0858 (2.25 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-01321490 , version 1 (12-12-2023)

Identifiants

Citer

Flavien Vansyngel, Benjamin D. Wandelt, Jean-François Cardoso, Karim Benabed. Semi-blind Bayesian inference of CMB map and power spectrum. Astronomy & Astrophysics - A&A, 2016, 588, pp.A113. ⟨10.1051/0004-6361/201424890⟩. ⟨hal-01321490⟩
45 Consultations
0 Téléchargements

Altmetric

Partager

More