Learning Term Weights for Ad-hoc Retrieval - Sorbonne Université Access content directly
Preprints, Working Papers, ... Year : 2016

Learning Term Weights for Ad-hoc Retrieval

Benjamin Piwowarski


Most Information Retrieval models compute the relevance score of a document for a given query by summing term weights specific to a document or a query. Heuristic approaches, like TF-IDF, or probabilistic models, like BM25, are used to specify how a term weight is computed. In this paper, we propose to leverage learning-to-rank principles to learn how to compute a term weight for a given document based on the term occurrence pattern.
Fichier principal
Vignette du fichier
0895B5B8-8348-4D16-8D55-BCD4482E89DB.pdf (339.48 Ko) Télécharger le fichier
Origin Files produced by the author(s)

Dates and versions

hal-01358682 , version 1 (01-09-2016)



Benjamin Piwowarski. Learning Term Weights for Ad-hoc Retrieval. 2016. ⟨hal-01358682⟩
199 View
191 Download



Gmail Mastodon Facebook X LinkedIn More