Proximal Optimization for Fuzzy Subspace Clustering - Sorbonne Université
Communication Dans Un Congrès Année : 2016

Proximal Optimization for Fuzzy Subspace Clustering

Résumé

This paper proposes a fuzzy partitioning subspace clustering algorithm that minimizes a variant of the FCM cost function with a weighted Euclidean distance and a penalty term. To this aim it considers the framework of proximal optimization. It establishes the expression of the proximal operator for the considered cost function and derives PFSCM, an algorithm combining proximal descent and alternate optimization. Experiments show the relevance of the proposed approach.
Fichier principal
Vignette du fichier
ipmu-article.pdf (314.95 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01364652 , version 1 (12-09-2016)

Identifiants

Citer

Arthur Guillon, Marie-Jeanne Lesot, Christophe Marsala, Nikhil R. Pal. Proximal Optimization for Fuzzy Subspace Clustering. 16th International Conference on Information processing and Management of Uncertainty (IPMU 2016), Jun 2016, Eindhoven, Netherlands. pp.675-686, ⟨10.1007/978-3-319-40596-4_56⟩. ⟨hal-01364652⟩
229 Consultations
355 Téléchargements

Altmetric

Partager

More