Comparison of different coupling schemes between counterions and charged nanoparticles in multiparticle collision dynamics
Résumé
We applied the multiparticle collision dynamics (MPC) simulation technique to highly asymmetric electrolytes in solution, i.e. charged nanoparticles and their counterions in a solvent. These systems belong to a domain of solute size which ranges between the electrolyte and the colloidal domains, where most analytical theories are expected to fail, and efficient simulation techniques are still missing. MPC is a mesoscopic simulation method which mimics hydrodynamics properties of a fluid, includes thermal fluctuations and can be coupled to a molecular dynamics of solutes. We took advantage of the size asymmetry between nanoparticles and counterions to treat the coupling between solutes and the solvent bath within the MPC method. Counterions were coupled to the solvent bath during the collision step, and nanoparticles either through a direct interaction force or with stochastic rotation rules which mimic stick boundary conditions. Moreover, we adapted the simulation procedure to address the issue of the strong electrostatic interactions between solutes of opposite charges. We show that the short-ranged repulsion between counterions and nanoparticles can be modeled by stochastic reflection rules. This new simulation scheme is very efficient from a computational point of view. We have also computed the transport coefficients for various densities. The diffusion of counterions was found in one case to increase slightly with the volume fraction of nanoparticles. The deviation of the electric conductivity from the ideal behavior (solutes at infinite dilution without any direct interactions) is found to be strong.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...