Computing subfields : Reverse of the primitive element problem - Sorbonne Université
Book Sections Year : 1993

Computing subfields : Reverse of the primitive element problem

Abstract

We describe an algorithm which computes all subfields of an effectively given finite algebraic extension. Although the base field can be arbitrary, we focus our attention on the rationals. This appears to be a fundamental tool for the simplification of algebraic numbers.
Fichier principal
Vignette du fichier
1993_Mega92_CompAlgGeo_ProgMath_Lazard_Valibouze_HAL_2017_12_23.pdf (327.48 Ko) Télécharger le fichier
Origin Files produced by the author(s)
Loading...

Dates and versions

hal-01672218 , version 1 (23-12-2017)

Identifiers

Cite

Daniel Lazard, Annick Valibouze. Computing subfields : Reverse of the primitive element problem. Frédéric Eyssette, and André Galligo. Computational Algebraic Geometry (MEGA, Nice, 1992), Birkhäuser Boston, pp.63--176, 1993, Progress in Mathematics 109, 978-1-4612-2752-6. ⟨10.1007/978-1-4612-2752-6_11⟩. ⟨hal-01672218⟩
37 View
167 Download

Altmetric

Share

More