On the stability of the state 1 in the non-local Fisher-KPP equation in bounded domains - Sorbonne Université Access content directly
Journal Articles Comptes Rendus. Mathématique Year : 2018

On the stability of the state 1 in the non-local Fisher-KPP equation in bounded domains

Abstract

We consider the non-local Fisher-KPP equation on a bounded domain with Neu-mann boundary conditions. Thanks to a Lyapunov function, we prove that under a general hypothesis on the Kernel involved in the non-local term, the homogenous steady state 1 is globally asymptotically stable. This assumption happens to be linked to some conditions given in the literature, which ensure that travelling waves link 0 to 1.
Fichier principal
Vignette du fichier
NonLocalFisherKPP_HAL_v1.pdf (112.39 Ko) Télécharger le fichier
Origin Files produced by the author(s)
Loading...

Dates and versions

hal-01686461 , version 1 (17-01-2018)

Identifiers

Cite

Camille Pouchol. On the stability of the state 1 in the non-local Fisher-KPP equation in bounded domains. Comptes Rendus. Mathématique, 2018, ⟨10.1016/j.crma.2018.04.016⟩. ⟨hal-01686461⟩
243 View
141 Download

Altmetric

Share

Gmail Mastodon Facebook X LinkedIn More