Cerebellar learning using perturbations - Sorbonne Université Access content directly
Journal Articles eLife Year : 2018

Cerebellar learning using perturbations

Abstract

The cerebellum aids the learning of fast, coordinated movements. According to current consensus, erroneously active parallel fibre synapses are depressed by complex spikes signalling movement errors. However, this theory cannot solve the credit assignment problem of processing a global movement evaluation into multiple cell-specific error signals. We identify a possible implementation of an algorithm solving this problem, whereby spontaneous complex spikes perturb ongoing movements, create eligibility traces and signal error changes guiding plasticity. Error changes are extracted by adaptively cancelling the average error. This framework, stochastic gradient descent with estimated global errors (SGDEGE), predicts synaptic plasticity rules that apparently contradict the current consensus but were supported by plasticity experiments in slices from mice under conditions designed to be physiological, highlighting the sensitivity of plasticity studies to experimental conditions. We analyse the algorithm's convergence and capacity. Finally, we suggest SGDEGE may also operate in the basal ganglia.
Fichier principal
Vignette du fichier
elife-31599-v1.pdf (2.67 Mo) Télécharger le fichier
Origin : Publication funded by an institution

Dates and versions

hal-01935283 , version 1 (26-11-2018)

Licence

Attribution

Identifiers

Cite

Guy Bouvier, Johnatan Aljadeff, Claudia Clopath, Célian Bimbard, Jonas Ranft, et al.. Cerebellar learning using perturbations. eLife, 2018, 7, pp.e31599. ⟨10.7554/eLife.31599⟩. ⟨hal-01935283⟩
146 View
138 Download

Altmetric

Share

Gmail Facebook X LinkedIn More