Nanocomposite coatings based on graphene and siloxane polymers deposited by atmospheric pressure plasma. Application to corrosion protection of steel
Résumé
The present study proposes an alternative eco-friendly method to prepare a thin composite coating based on graphene embedded in siloxane polymers which can be used as application for the corrosion protection of steel. The nanocomposite coatings were elaborated by a dielectric barrier discharge using a nebulized colloidal suspension of graphene nanosheets (GNs) dispersed in hexamethyldisiloxane (HMDSO) used as the precursor for the polymer matrix. After obtaining a stable colloidal solution, it was nebulized into the plasma reactor to form a plasma polymer (pp) coating from HMDSO (ppHMDSO) in which GNs were incorporated (GN@ppHMDSO) on the mild steel substrate. The chemical structure of the hybrid coatings was characterized by X-ray photoelectron spectroscopy and Fourier transform infrared spectrometry. Raman spectra of GNs and GN@ppHMDSO coatings suggest the existence of charge transfer between the GNs and the HMDSO matrix. Furthermore, scanning electron microscopy confirms the synthesis of micro/nanocomposite with a fairly homogeneous dispersion of the GNs in the polymer matrix. The corrosion resistance of the samples was evaluated by electrochemical impedance spectroscopy which showed that the hybrid coatings GN@ppHMDSO deposited by a one-step atmospheric pressure plasma process, presented excellent anticorrosion performance with 99.99% of protection efficiency.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...