Word embedding for French natural language in healthcare: a comparative study (Preprint) - Sorbonne Université
Pré-Publication, Document De Travail Année : 2019

Word embedding for French natural language in healthcare: a comparative study (Preprint)

Résumé

Word embedding technologies, a set of language modeling and feature learning techniques in natural language processing (NLP), are now used in a wide range of applications. However, no formal evaluation and comparison have been made on the ability of each of the 3 current most famous unsupervised implementations (Word2Vec, GloVe, and FastText) to keep track of the semantic similarities existing between words, when trained on the same dataset.
Fichier principal
Vignette du fichier
document.pdf (628.24 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-02321827 , version 1 (21-10-2019)

Identifiants

Citer

Emeric Dynomant, Romain Lelong, Badisse Dahamna, Clément Massonnaud, Gaétan Kerdelhué, et al.. Word embedding for French natural language in healthcare: a comparative study (Preprint). 2019. ⟨hal-02321827⟩
943 Consultations
339 Téléchargements

Altmetric

Partager

More