THE GAME OPERATOR ACTING ON WADGE CLASSES OF BOREL SETS
Résumé
We study the behavior of the game operator on Wadge classes of Borel sets. In particular we prove that the classical Moschovakis results still hold in this setting. We also characterize Wadge classes Γ for which the class Γ has the substitution property. An effective variation of these results show that for all 1 ≤ η < ω CK 1 and 2 ≤ ξ < ω CK 1 , (Dη(Σ 0 ξ)) is a Spector class while (D2(Σ 0 1)) is not.
Domaines
Mathématiques [math]
Fichier principal
Debs et Raymond - 2019 - THE GAME OPERATOR ACTING ON WADGE CLASSES OF BOREL.pdf (353.44 Ko)
Télécharger le fichier
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...