Global existence for a free boundary problem of Fisher-KPP type - Sorbonne Université
Article Dans Une Revue Nonlinearity Année : 2019

Global existence for a free boundary problem of Fisher-KPP type

Résumé

Motivated by the study of branching particle systems with selection, we establish global existence for the solution (u, µ) of the free boundary problem          ∂ t u = ∂ 2 x u + u for t > 0 and x > µ t , u(x, t) = 1 for t > 0 and x ≤ µ t , ∂ x u(µ t , t) = 0 for t > 0, u(x, 0) = v(x) for x ∈ R, when the initial condition v : R → [0, 1] is non-increasing with v(x) → 0 as x → ∞ and v(x) → 1 as x → −∞. We construct the solution as the limit of a sequence (u n) n≥1 , where each u n is the solution of a Fisher-KPP equation with same initial condition, but with a different non-linear term. Recent results of De Masi et al. [5] show that this global solution can be identified with the hydrodynamic limit of the so-called N-BBM, i.e. a branching Brownian motion in which the population size is kept constant equal to N by killing the leftmost particle at each branching event.
Fichier principal
Vignette du fichier
Berestycki et al. - 2019 - Global existence for a free boundary problem of Fi.pdf (301.91 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02966981 , version 1 (14-10-2020)

Identifiants

Citer

Julien Berestycki, Éric Brunet, Sarah Penington. Global existence for a free boundary problem of Fisher-KPP type. Nonlinearity, 2019, 32 (10), pp.3912-3939. ⟨10.1088/1361-6544/ab25af⟩. ⟨hal-02966981⟩
44 Consultations
41 Téléchargements

Altmetric

Partager

More