Extending representation formulas for boundary voltage perturbations of low volume fraction to very contrasted conductivity inhomogeneities - Sorbonne Université
Journal Articles Comptes Rendus. Mathématique Year : 2022

Extending representation formulas for boundary voltage perturbations of low volume fraction to very contrasted conductivity inhomogeneities

Yves Capdeboscq
Shaun Chen Yang Ong
  • Function : Author
  • PersonId : 1093799

Abstract

Imposing either Dirichlet or Neumann boundary conditions on the boundary of a smooth bounded domain $\Omega$, we study the perturbation incurred by the voltage potential when the conductivity is modified in a set of small measure. We consider $\left(\gamma_{n}\right)_{n\in\mathbb{N}}$, a sequence of perturbed conductivity matrices differing from a smooth $\gamma_{0}$ background conductivity matrix on a measurable set well within the domain, and we assume $\left(\gamma_{n}-\gamma_{0}\right)\gamma_{n}^{-1}\left(\gamma_{n}-\gamma_{0}\right)\to0$ in $L^{1}(\Omega)$. Adapting the limit measure, we show that the general representation formula introduced for bounded contrasts in this article can be extended to unbounded sequences of matrix valued conductivities.
Fichier principal
Vignette du fichier
2022-Capdeboscq-Ong.pdf (651.05 Ko) Télécharger le fichier
Origin Publisher files allowed on an open archive

Dates and versions

hal-03171353 , version 1 (16-03-2021)
hal-03171353 , version 2 (22-02-2022)

Licence

Identifiers

Cite

Yves Capdeboscq, Shaun Chen Yang Ong. Extending representation formulas for boundary voltage perturbations of low volume fraction to very contrasted conductivity inhomogeneities. Comptes Rendus. Mathématique, 2022, 360, pp.127--150. ⟨10.5802/crmath.273⟩. ⟨hal-03171353v2⟩
76 View
64 Download

Altmetric

Share

More