Online Trajectory Planning Through Combined Trajectory Optimization and Function Approximation: Application to the Exoskeleton Atalante - Sorbonne Université
Communication Dans Un Congrès Année : 2020

Online Trajectory Planning Through Combined Trajectory Optimization and Function Approximation: Application to the Exoskeleton Atalante

Alexis Duburcq
  • Fonction : Auteur
Yann Chevaleyre
Guilhem Boéris
  • Fonction : Auteur

Résumé

Autonomous robots require online trajectory planning capability to operate in the real world. Efficient offline trajectory planning methods already exist, but are computationally demanding, preventing their use online. In this paper, we present a novel algorithm called Guided Trajectory Learning that learns a function approximation of solutions computed through trajectory optimization while ensuring accurate and reliable predictions. This function approximation is then used online to generate trajectories. This algorithm is designed to be easy to implement, and practical since it does not require massive computing power. It is readily applicable to any robotics systems and effortless to set up on real hardware since robust control strategies are usually already available. We demonstrate the computational performance of our algorithm on flat-foot walking with the self-balanced exoskeleton Atalante.
Fichier principal
Vignette du fichier
ICRA2020_GuidedTrajectoryLearning.pdf (5.84 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03175242 , version 1 (19-03-2021)

Identifiants

Citer

Alexis Duburcq, Yann Chevaleyre, Nicolas Bredeche, Guilhem Boéris. Online Trajectory Planning Through Combined Trajectory Optimization and Function Approximation: Application to the Exoskeleton Atalante. ICRA 2020- International Conference on Robotics and Automation, 2020, Paris (virtual), France. ⟨10.1109/ICRA40945.2020.9196633⟩. ⟨hal-03175242⟩
48 Consultations
80 Téléchargements

Altmetric

Partager

More